Thermosensitive transient receptor potential (TRP) channel agonists and their role in mechanical, thermal and nociceptive sensations as assessed using animal models.
نویسندگان
چکیده
INTRODUCTION The present paper summarizes research using animal models to investigate the roles of thermosensitive transient receptor potential (TRP) channels in somatosensory functions including touch, temperature and pain. We present new data assessing the effects of eugenol and carvacrol, agonists of the warmth-sensitive TRPV3, on thermal, mechanical and pain sensitivity in rats. METHODS Thermal sensitivity was assessed using a thermal preference test, which measured the amount of time the animal occupied one of two adjacent thermoelectric plates set at different temperatures. Pain sensitivity was assessed as an increase in latency of hindpaw withdrawal away from a noxious thermal stimulus directed to the plantar hindpaw (Hargreaves test). Mechanical sensitivity was assessed by measuring the force exerted by an electronic von Frey filament pressed against the plantar surface that elicited withdrawal. RESULTS Topical application of eugenol and carvacrol did not significantly affect thermal preference, although there was a trend toward avoidance of the hotter surface in a 30 vs. 45°C preference test for rats treated with 1 or 10% eugenol and carvacrol. Both eugenol and carvacrol induced a concentration-dependent increase in thermal withdrawal latency (analgesia), with no significant effect on mechanosensitivity. CONCLUSIONS The analgesic effect of eugenol and carvacrol is consistent with previous studies. The tendency for these chemicals to increase the avoidance of warmer temperatures suggests a possible role for TRPV3 in warmth detection, also consistent with previous studies. Additional roles of other thermosensitive TRP channels (TRPM8 TRPV1, TRPV2, TRPV4, TRPM3, TRPM8, TRPA1, TRPC5) in touch, temperature and pain are reviewed.
منابع مشابه
The role of protease-activated receptor type 2 in nociceptive signaling and pain.
Protease-activated receptors (PARs) belong to the G-protein-coupled receptor family, that are expressed in many body tissues especially in different epithelial cells, mast cells and also in neurons and astrocytes. PARs play different physiological roles according to the location of their expression. Increased evidence supports the importance of PARs activation during nociceptive signaling and i...
متن کاملThermosensitive TRP ion channels mediate cytosolic calcium response in human synoviocytes.
The transient receptor potential (TRP) channels are important membrane sensors, responding to thermal, chemical, osmotic, or mechanical stimuli by activation of calcium and sodium fluxes. In this study, three distinct TRP channels were detected and their role established in mediating cytosolic free calcium concentration ([Ca(2+)](cyt)) response in tumor-derived SW982 synoviocytes and primary cu...
متن کاملPain TRPs
Transient receptor potential (TRP) ion channels are molecular gateways in sensory systems, an interface between the environment and the nervous system. Several TRPs transduce thermal, chemical, and mechanical stimuli into inward currents, an essential first step for eliciting thermal and pain sensations. Precise regulation of the expression, localization, and function of the TRP channels is cru...
متن کاملBiophysical analysis of thermosensitive TRP channels with a special focus on the cold receptor TRPM8
Mammals maintain homeostatic control of their body temperature. Therefore, these organisms are expected to have adaptations that confer the ability to detect and react to both self and ambient temperature. Temperature-activated ion channels have been discovered to be the primary molecular determinants of thermosensation. The most representative group of these determinants constitutes members of...
متن کاملAllosterism and Structure in Thermally Activated Transient Receptor Potential Channels.
The molecular sensors that mediate temperature changes in living organisms are a large family of proteins known as thermosensitive transient receptor potential (TRP) ion channels. These membrane proteins are polymodal receptors that can be activated by cold or hot temperatures, depending on the channel subtype, voltage, and ligands. The stimuli sensors are allosterically coupled to a pore domai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chemosensory perception
دوره 8 2 شماره
صفحات -
تاریخ انتشار 2015